欧洲的科研团队正全力投身于小型化太空推进技术的前沿开发工作。这项创新技术摒弃了传统的推进剂,而是巧妙地基于集成钙钛矿 - 铜铟镓二硒化物(CIGS)叠层太阳能电池的电动系线来运作 。

该技术的诞生有着明确且重要的目标,它致力于实现太空中卫星的灵活操控。无论是调整卫星的运行姿态,还是协助卫星安全脱离既定轨道,它都能发挥作用。值得一提的是,在整个运作过程中,它无需依赖卫星上搭载的重型推进装置,从而有效减轻了卫星的负载,为太空探索任务带来更多的便利与可能。

一个欧洲财团正在开发小型化的太空推进装置,这种装置无需推进剂即可运行。它们基于集成钙钛矿-铜铟镓二硒化物(CIGS)叠层太阳能电池的电动技术。
最近启动的一个名为E.T.COMPACT的项目,是Compact and Propellant-less Electrodynamic Tether的缩写,旨在开发一种可用于离轨或机动的“绿色”推进系统,航天器不依赖船上的重型推进剂。
“该项目的主要挑战是达到技术成熟度四级(TRL 4),用于使用太阳能和基于电动技术的超紧凑型无推进剂、太空绿色推进移动模块(GMM),”马德里卡洛斯三世大学(UC3M)项目协调员Gonzalo Sánchez-Arriaga告诉 pv magazine
德累斯顿工业大学(Technical University Dresden)空间系统系主任马丁·塔伊马尔(Martin Tajmar)表示,这种类型的推进有可能“大大降低”卫星成本,同时显著增加可用卫星质量的比例,为科学实验、天线或相机腾出空间。
该项目包括开发裸光伏系绳 (Bare-Photovoltaic Tethers, BPT),将钙钛矿-CIGS 叠层电池与长导电系绳条一侧的两端子器件集成在一起。
“BPT 应该满足具有挑战性的要求,例如能够存储在小半径的卷轴中,与太空环境兼容,并且具有大于12%的功率转换效率,”Sánchez-Arriaga 说,并指出该团队目前正在进行权衡分析,以定义太阳能电池尺寸和衬底等内容。
在描述该项目的BPT和电动系绳技术时,Sánchez-Arriaga 说:“对于 E.T.COMPACT的 GMM,我们的目标是几百米的系绳长度。然而,系绳的一个有趣特点是它们是可扩展的,因为它们的长度和宽度可以根据卫星的质量、轨道和推进需求进行设计。例如,一个一公里长、宽 2.5 厘米、一侧印有光伏电池的胶带可提供 25平方米的面积。
Sánchez-Arriaga 表示,考虑到太阳常数约为 1.3kW/平方米,BPT概念在将裸线和光伏技术结合在单个设备中时具有“很高的潜力”。
电动系绳是可以连接到卫星上的长导电条。“当穿过地球磁场时,这些系绳会产生电压。这会在系绳和周围的等离子体大气或电离层之间形成一个闭合回路。作用在导电条上的力称为洛伦兹力。这个原理也用于经典的电动机,“研究人员说。
然而,这种力不能定义为电力推进。“在太空领域,人们明白电力推进是指等离子体推进器,这需要推进剂,”Sánchez-Arriaga 解释说,并指出化学推进和电力推进分别使用肼和氙或氪。
这个为期三年的项目耗资400万欧元(410 万美元),由欧洲创新委员会探路者计划资助。该联盟包括来自意大利钙钛矿专家Halocell Europe、奥地利CIGS组件制造商 Sunplugged、UC3M的西班牙衍生公司Persei Space、航空航天技术公司马德里Deimos Space的子公司 Deimos Engineering and Systems的研究人员,以及帕多瓦大学、德累斯顿工业大学和 UC3M。

Perovskite-CIGS tandem solar cells powering electrodynamic tethers used in satellites

European researchers are developing miniaturized space propulsion technology that is propellant-free and based on electrodynamic tethers integrating perovskite-copper indium gallium diselenide (CIGS) tandem solar cells. It is meant to maneuver satellites in space or in de-orbiting without relying on heavy propellants on board.

A European consortium is developing miniaturized in space propulsion devices that operate without propellants. They are based on electrodynamic tether technology integrating perovskite-copper indium gallium diselenide (CIGS) tandem solar cells.

A recently launched project known as E.T.COMPACT, short for Compact and Propellant-less Electrodynamic Tether, aims to develop a “green” propulsion system that could be used to de-orbit or maneuver. spacecraft without relying on heavy propellants on board.

“The main challenge of the project is to reach technology readiness level four (TRL 4) for an ultra-compact propellant-less, in-space green-propulsion mobility module (GMM) fed with solar energy and based on electrodynamic tether technology,” Gonzalo Sánchez-Arriaga project coordinator at University Carlos III of Madrid (UC3M), told pv magazine.

This type of propulsion has the potential to “considerably reduce” satellite costs while significantly increasing the proportion of usable satellite mass, freeing up space for scientific experiments, antennas, or cameras, according to Martin Tajmar, the chair of space systems at Technical University Dresden.

The project includes developing bare-photovoltaic tethers (BPT) that integrate perovskite-CIGS tandem cells with a 2-terminal configuration on one side of the long conductive tether strips.

“The BPT should meet challenging requirements like for instance being able to be stored in a reel of small radius, being compatible with the space environment, and having a power conversion efficiency larger than 12%,” said Sánchez-Arriaga, noting that the team is currently doing a trade-off analysis to define things like solar cell dimensions and substrates.

Describing the project’s BPT and electrodynamic tether technology, Sánchez-Arriaga said, “For the GMM of E.T.COMPACT we are targeting a tether length of a few hundreds of meters. However, an interesting characteristic of tethers is that they are scalable in the sense that their length and width can be designed according to the mass of the satellite, its orbits and propulsion needs. For instance, a 1 km-long tape tether with a width of 2.5 cm and PV cells printed on one side provides an area of 25 m2.”

Considering that the solar constant is around 1.3kW/m2, the BPT concept has “high potential” when combining bare tether and photovoltaic technologies in a single device, according to Sánchez-Arriaga.

The electrodynamic tethers are long, conductive strips that can be attached to satellites. “When moving through the earth's magnetic field, these tethers generate a voltage. This creates a closed circuit between the tether and the surrounding plasma atmosphere or the ionosphere. The force acting on the conductive strip is known as the Lorentz force. This principle is also used in classic electric motors,” stated the researchers.

This force, however, can not be defined as electric propulsion. “In the space domain people understand that electric propulsion means plasma thrusters, which need propellant,” explained Sánchez-Arriaga, noting that chemical propulsion and electric propulsion use hydrazine and xenon or krypton, respectively.

The €4 million ($4.1 million) three-year project is funded by the European Innovation Council Pathfinder program. The consortium includes researchers from perovskite specialist Halocell Europe, based in Italy, CIGS module manufacturer Sunplugged, based in Austria, Persei Space, a Spanish spinoff of UC3M, Deimos Engineering and Systems, a unit of Madrid-based Deimos Space, an aerospace technology company, along with University of Padua, TU Dresden and UC3M.

(消息来源:pv-magazine.com)



点赞(3) 打赏

评论列表 共有 0 条评论

暂无评论

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部